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THREE-DIMENSIONAL SHIELD MECHANICS

By Thomas M. Barczak1 and W. Scott Burton2

ABSTRACT

This Bureau of Mines report describes research on developing technol­
ogy to utilize shields as roof load monitors. Three-dimensional equa­
tions of static quilibrium are presented for a generic two-legged long- 
wall shield. The equations are presented in the most general form, 
assuming a force and moment vector at each reaction by rigid-body analy­
sis of the shield mechanics. The resulting system of equations was 
found to be indeterminate to a very high degree. A three-dimensional 
solution to measurement of the resultant reaction on the canopy by the 
strata activity and shield response required the elimination of several 
forces or moments that were thought to be nonparticipating or to not 
significantly affect overall shield mechanics. Required measurements 
for solution of the equilibrium equations were leg, canopy capsule, and 
lemnlscate link forces. Two-dimensional analysis, which considered 
forces acting only in the roof-to-floor and faee-to-waste plane, was 
also provided by reduction of the three-dimensional equations.

1 Physicist, Pittsburgh Research Center, Bureau of Mines, Pittsburgh, PA.
^Mechanical engineer, Boeing Services International, Pittsburgh, PA."
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INTRODUCTION

The Bureau of Mines is conducting re­
search to evaluate the use of longwall 
roof supports as roof load monitors in an 
effort to develop a better understanding 
of the support requirements associated 
with strata loading and support-strata 
interaction.

Past efforts to use roof supports as 
load-sensing devices have generally been 
limited to one-dimensional analysis by 
summation of measured leg forces to ob­
tain a vertical (roof-to-floor) reaction 
to describe support resistance to applied 
strata loading. Modern longwall sup­
ports, such as the shield, are designed 
to resist both roof-to-floor (vertical) 
and face-to-waste (horizontal) loading, 
requiring two-dimensional analyses to de­
termine vertical and horizontal support 
reactions. The Bureau has demonstrated 
that vertical and horizontal support re­
sistance can be reasonably determined 
from two-dimensional modeling of the sup­
port structure by static rigid-body 
analysis.

The two-dimensional model assumes there 
are no lateral (parallel to the face) 
loads acting on the support and does not 
consider the effect of moment loading 
due to imbalances in leg and lemniscate 
link forces. These limitations are over­
come by three-dimensional modeling of the 
support structure in which participa­
tion of out-of-plane forces and associ­
ated moments is considered, in theory 
permitting determination of reactions in 
three dimensions, i.e., vertical (roof- 
to-f loor), horizontal (face-to-waste), 
and lateral (parallel to face). Unfor­
tunately, the advancement of a three­
dimensional model is not without diffi­
culties. In the derivation of rigid-body 
static models in three dimensions, the 
accumulation of unknowns far outpaces the 
available force and moment equilibrium 
equations, making the system statically 
indeterminate. Assumptions are therefore 
required regarding the participation .of 
some forces and moments to reduce the 
system’s indeterminacy.
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This report first presents the model in 
full form, depicting all the forces and 
moments theoretically acting on a shield 
structure. It then proceeds to eliminate 
forces and moments that realistically do 
not significantly participate to provide

a determinate solution for three-dimen­
sional resultant force vector determina­
tions. The model is also reduced to a 
two-dimensional state by elimination of 
out-of-plane forces and moments.

THREE-DIMENSIONAL RIGID-BODY SHIELD MODEL

Figure 1 shows the configuration of a 
generic, two-legged shield, illustrating 
major shield components. In the follow­
ing pages, the static, rigid-body equa­
tions of equilibrium are presented for 
the canopy, caving shield, and base com­
ponents of the shield; tables 1-3 give 
the respective nomenclature descriptions. 
Each component is considered separately 
with illustrations of component forces 
and moments. Equations are provided in 
both vector and scaler component form. 
Although the shield is a pin-jointed 
structure, the equations are presented in 
the most general form by assuming that 
reaction moments occur at all joints due 
to pin friction. Hence a joint is con­
sidered to have six degrees of freedom, 
consisting of three force components and 
three moment components. With 2 pin con­
tacts, 1 capsule contact, 2 leg contacts, 
and 1 assumed reaction contact, there are 
18 force and moment vectors that must act

in force and moment equilibrium on the 
canopy alone. The only simplification 
provided in this analysis is the combina­
tion of like forces and moments, such as 
left and right leg forces and left and 
right link forces, into single, equiva­
lent force-couple systems acting at the 
component (canopy, caving shield, or 
base) centerline.

Y|

FIGURE 1.—Shield components and coordinate reference 
systems.
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CANOPY

TABLE 1. - Canopy nomenclature description

Symbol Vector represented Scaler components
P P x  1 » P y 1 > P * 1

Q Qx 1 > Qy 1j Qzl/VL I'x 1 > LV 1. I*z 1
IVR R x  1 > ®-y 1 » R z 1

M p M P x 1 »  M P y 1 >  M P z 1
esj
M<j M 0 x 1> M 0 y 1 » M 0 z 1

M l M L x 1  » M L y  1 « m L z 1
(VM r M R x 1> M R y 1 >  m R z 1

tq Canopy capsule moment vector distance....... ............... x i o» y i Q  z i o
(V

r L x 1 l i y i L .  z i l

Ï R x  1 R » y i R »  Z 1 R

Left

Ml $r
Top

Mq rL Tip

Bottom
FIQURE 2.—Forces and moments on canopy.



Sommation of Forces (fig. 2)
p /V  l'V» ^  IV  fK4

¿F = P +  Q +  L +  R = 0. (1)

lFK 1 = Pxl + Qxl + Lxl + Rx l  = 0 . ( 2 )

I F y1 “  F y 1 +  Q y 1 +  L y 1 +  R y 1 ■ 0 ,  ( 3 )

2>z1  *  P z l  +  Qz l  +  L z ,  +  R z l  = 0 .  ( 4 )

IM (01) = MP + Mq + M L + Mr + (tq x  Q) + (rL * L) + (rR x R )  - 0 . (5)

iHx1(01) = M Px1 + Mçx1 + M Lx 1 + M Rx| + (yiqQzi - z i ç Q y i )

+ ( y i L l z 1 “  z 1 Ly 1) + ( y i R R z l  -  z 1R ^ y 1) “  °* ( 6 )

^My 1 ( 0 1 )  -  Mpy i + Mq y i + Ml y 1 + Mr y i + ( z i q Qx i -  x i q Qz O

+ ( z i L l x1 "  * 1 L ^ z l ) +  ( z i r R x I  "  x i r R z i )  = 0 .  ( 7 )

I m z i ( 0 1 )  =  M p z i +  MQz1  +  M L z i +  M R z i +  ( x i ç Q y i  -  y i g Q x 1 )

+ 4 x u -L y i -  y i ll x r )  + (xtRR-y-i -  ytRRx i )  = ° *  (8 )
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CAVING SHIELD 

TABLE 2. - Caving shield nomenclature description

Symbol Vector represented Scaler components
E E x 2 > E y 2 > E z 2

U Ux 2 > Uy2 » u z2

T Tx2» T y 2 , T z 2
/VS S x 2 > S y 2 » S z 2

Rc R C x 2 >  R C y 2 >  r C z 2
r \ j

m e M E x 2 j M E y 2 »  M E z 2
a;

Mu M U x 2 »  M(jy2» M U z 2¿■w
m t M T x 2 »  M T y 2 j M T z 2

M s M S x 2»  M S y 2 >  M S z 2

M rc M R C x 2 > M RCy2 » M R C z 2

?E x 2 E > Y 2 E >  z  2 E

*u x 2 U > Y 2 U »  z  2 U

¥ t Corapresslon lemniscate link moment vector distance...... X 2 T >  Y 2 T »  z  2 T

? R C Gob reaction moment vector distance..................... x 2 R C *  Y 2 R C »  Z 2 R C

Left
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Summation of Force« (flg. 3)
P-  / v  a/ < v  r v= E + U + T + S + R C = 0. (9)

1^x2 " Ex2 + UX 2 + TX 2 + SX 2 + R c x 2  = 0* (1°)

IFy2 = E y 2 + Uy 2 + Ty 2 + Sy 2 + Rcy2 = 0 . (1 1 )

IFz2 “ Ez2 + Uz2 + Tz2 + Sz2 + Rcz2 = 0 . (1 2)

Summation of Moments (flg. 3)

Im  (02) - m e + Mu + M t + M s + m rc

+ (?E X  E) + (?u X U) + (?T x T) + (?RC X Rc) = 0, (13)

lMx2 (02) = M Ex2 + M U x2 + M T x 2 + M Sx2 + M R C x 2

+  ( Y 2 E E z 2 ~  z 2 E E y 2 )  +  ( y 2 U U z2  ~  z 2 t jU y 2 )  +  ( Y 2 TT z 2 "  z 2TT y 2 )

+ (y 2R C RCz2 ”  z 2RCRC y 2 )  “  0» ( 1 4 )

iMy2 (02) “ M E y 2 + M|jy2 + Mt y 2 + M S y 2 + M R C y 2

+  ( z 2EEx2  “  x 2 eE z 2 )  +  ( z 2 ü U x 2 “  x 2 uUz 2 )  +  ( z 2 t T x 2 “  X 2 tT Z2 )

+ ( z 2 R C R C x 2  “ X 2 R C r C z 2 >  = 0. (15)

Imz2 (0 2 ) = M Ez2 + M U z 2 + Mjz 2 + Msz2 + M R C z 2

+  ( x 2 EE y 2 “  y 2 E E x 2 )  +  ( x 2 u U y 2 “  y 2 u U x 2 >  +  ( x 2 l T y 2  “  Y 2 t T x 2 )

+ ( x 2 R C R C y 2  “ y 2 R C RC x 2 )  “ 0. (16)
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BASE

TABLE 3. - Base structure nomenclature description

Symbol Vector represented Scaler components
Rb
B
C
D
ÏR B

* B

*C

Base resultant reaction force.............. .
Leg force................. *................. ,
Compresslon lemniscate link force...........
Tension lemniscate link force...............
Base resultant reaction moment distance....
Leg moment vector distance..................
Compression lemniscate link moment distance.

R Bx3> ®-By3> R Bz3  

B x 3 > B y 3 i  B z 3 
^x3» ^y3> ^z3  

d x3> D y3» D z3  

X 3RB* y  3RB> z  3RB 

X 3B> y 3 B .  Z 3B 

X 3C> J 3C,  z  3C

Left

M rb

FIGURE 4.—Forces and moments on base.



Summation of Forces (fig. 4)
r » ^  ^  ™  <%/ /s# /V

¿F = R b + B + C + D = 0 .  (17)

I Fx3 = Rbx3 + Bx 3 + Cx3 + DX3 = 0. (18)

I Fy3 “ RBy3 + By3 + Cy3 + Dy3 = 0.  (19)

I F z 3  =  R B z 3  +  Bz3 +  Cz3 +  Dz3 =  0. (20)

Summation of Moments (fig. 4)

Jm  (03) = M r g + Mg + Mg + M q

+ ( r RB X Rb) + ( r b X B) + ( r c * C) -  0.  (21)

I mx 3(03) = MrBx 3 + MßX3 + Mqx3 + MDx3

+  ( Y 3 R B R B z 3  “  z 3 R B R B y 3 )  +  ( y 3 B B z 3  "  z 3BB y 3 )

+ Cy3cCz3 “ z 3cCy3) ** 0. (22)

lMy3(03) = MRBy3 + Mßy3 + Me y3 + Moy3

+  ( z 3 r b r B x 3 “  X 3 r b R b z 3 )  +  ( z 3 ß B x 3  “  X 3 BB z 3 )

+ ( z 3cCx3 -  X3cCz3) = 0. (23)

I mZ3 (03) = M r b z 3  + Mbz3 + MCz3 + MpZ3

+  ( x 3 R BRBy3 -  y 3 R B R Bx3>  +  ( x 3BBy3 -  y 3BB X3)

+ (x3cCy3 -  y3cCx3> “ 0.  (24)
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TRANSFORMATION OF COORDINATE SYSTEMS

The static equilibrium equations pre­
sented in the previous section utilized 
three different coordinate systems to 
take advantage of the relative orienta­
tion of major shield components (canopy, 
caving shield, base). Reduction of these 
equations requires transformation of 
these three coordinate systems into a 
single coordinate system. Since the de­
sired solution is the resultant force 
acting on the canopy, the caving shield 
and the base equilibrium equations are 
transferred to the coordinate system des­
ignated for the canopy.

The transformation of the caving shield 
coordinate system (x2 , y 2 , Z2 ) into the 
canopy coordinate system (xj, y 1, Z|) is 
achieved by rotation of the (x2, J2> zl) 
system as illustrated in figure 5. Math­
ematically this rotation is accomplished 
by the orthogonal transformation:

V*i - Vx2cos 6 - Vy2sin 0, (25)

V y 1 - VX2sin 6 + Vy2cos 0, (26)

V Z 1 - Vz2, (27)

where a is the angle from the xi axis to 
the x 2 axis and V is a generic vector.

The coordinate transformation of the 
caving shield coordinate system (x2 , y 2 , 
Z 2 ) into the global canopy system (xi,
y 1, z 1) eliminates several unknowns by 
equating common forces and moments.

Rotate coordinate system 2 
into coordinate system I

FIGURE 5.—Coordinate system transformations.

E =  -P or Exl = -Pxl and % x 1 ss "Mpx 1 •

Mg =  -Mp or B y , - -Pyl and M Ey 1 m -Mpy2 «

Ezl -Pzl and m E z 1
SS -Mpz2 *

U - -Q or Ü K 1 = -Qx 1 and Mijxl ss -Moxl*
^  r>jMy «  -M<j Uy, - -Qy 1 and MUy 1 = - M 0 y 2 .

Uzl ss -Qzi and My z 1 ss - M o z 2 »



11

Using the transformation presented in equations 25 through 27 and the substitution 
for equivalent forces and moments discussed previously, the transformed force and mo­
ment equations for the caving shield in the global (xj, y|, z|) coordinate system are
as follows:

Summation of Forces 

|FX i = -Px i - Qx i + ( T x 2 c o s  a - T y 2 s i n  a) + (Sx2cos a - Sy2sin a)

+ ( R C x 2 c o s  a - R C y 2 s i n  a) - 0. (28)

^Fyi « -Pyi “ Qyi + (TX2sin a + Ty2cos a) + (Sx2sin a + Sy2cos a)

+ (RcX28in a + Rcy2cos a) = 0. (29)

EFzi = -PZ| - Qzi + T z2 + Sz2 + Rcz2 = 0. (30)

Summation of Moments 

i(02) = -Mpxi - M q x i + (MTx2eos a - M Ty2sin a)

+ (Ms x 2Cos a - Msy28in a) + (Mr c x2Cos a - MRCy2sin a)

+ [~Pzi(x2 Esin a + y2ECOs a) + (Py i)(z2 E)1 

+ [ - Q z l (x2usin a + y2ucos a) + (Qyi)(z2u)]

+ [Tz2 (x2jsin a + y2jcos a) - (Tx2sin a + Ty2cos a) (z2f)]

+ [Rcz2 (x2 RCsln a + y2RCcos a)

- (z2Rc)(Rcx2Sin a + Rcy2 Cos a)] = 0. (31)

^My i (02) = -Mpy] - Mpy i + (Mjx2sin ot + Mjy2cos ct)

+ (Msx28ln a "*■ M Sy2Cos a) + (MRcX28in os + MRQy2cos a)

+ [z2E (-Px i) + (Pzi)(x2Ecos a - y2Esin a)]

+ fz2 U ("Qx 1) + (Qzl )(x2 (?cos a - y 2psin a)]

+ [z2t(Tx2cos a - Ty2sin a) - Tz2(x2tcos a - y 2TSin a)]

+ [z2Rc(Rcx2Cos a - RCy2sin a)

- RCz2(x2rccos a - y2Rcsln a)] = 0 . (32)
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lMz1(02) = “Mpzi - M q z i + MTz2 + M s Z2 + MRCz2

+  [ * 2 E E y2 "  y 2 E ® x 2 1 +  [ x 2 uU y2 ”  y 2 U Ux 2 l  +  [ * 2 l T y 2  “  y 2 T T x 2 ]

+  [ x 2 R C R C y 2  "  y 2 R C ® - C x 2 1 =  0 *  ( 3 3 )

As indicated by the coordinate transformation (equations 25-27), there is no rota­
tion of the (x2, y2 > z2) coordinate system for the z-axis transformation, resulting 
in a direct transformation Zj = z2. A further simplification of the M zl(02) equation 
can be achieved by substituting terms expressed in the (x2, y2, z2) coordinate system 
by equivalent terms in the (xj, yj, Z|) system where

X2 = xjcos a + y^sin a (34)

72 “ yicos a - xjsin a (35)
r^i r>jand by substitution of -P for E and -Q for U. Remember that these are equivalent ex­

pressions and not transformations.

The equation for ^Mzi(02) then becomes

£m 2i(02) = -Mpzi - Mpz] + Mrz2 + H s22 + Mrcx2

+ [x2e(Px1sin a - Py|cos a) + y2E(Pxicos a + Pyisin a)]

+ [x2u(Qx1sin a - Qyicos a) + y2u(Qxicos a + Qyisin a)]

+ [x2r(Ty2) “ y2r(Tx2)3 + [x2Rc(RGy2) - y2Ro(RCx2)] “ 0, (36)

Since there is no rotation of the base coordinate system, the equilibrium equations
for the base result in a direct transformation and therefore are the same as those
presented previously, where

Vx3=Vx,, (37)

Vy3 - Vyl, (38)

and Vz3 = V 2 l . (39)

SOLUTION OF THREE-DIMENSIONAL RESULTANT SHIELD LOADING

The resultant force reaction on the canopy is described in six parameters identify­
ing force and location parameters as follows:

Rxi “ Horizontal resultant canopy reaction force.

Ryi =» Vertical resultant canopy reaction force.

Rz1 = Lateral resultant canopy reaction force.

xir ■ Location of resultant force in horizontal axis.

yiR = Location of resultant force in vertical axis.

z 1r — Location of resultant force in lateral axis.
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Direct solution of the equilibrium equations for these six unknown parameters re­
quires static determinacy. A field instrumentation array developed and tested in the 
Bureau's mine roof simulator3 enables determination of leg, canopy capsule, and lem­
niscate link forces. The resulting system of equations is indeterminate to a high 
degree, requiring reduction of the number of unknowns for a closed-form solution. 
While various combinations of unknowns are possible as candidates for elimination 
without endangering the accuracy of the final solution, table 4 presents proposed 
parameters with justification for elimination. These reductions allow solution of 
three-dimensional resultant force from measurement of leg, canopy capsule, and 
lemniscate link forces.

With deletions of nonparticipating forces and moments identified in table 4, solu­
tion of the three-dimensional resultant load parameters is as follows;

TABLE 4. - Parameter elimination identification1

Parameter Identification Justification
Leg is pin jointed acting in x-y 
plane incapable of transmitting 
lateral (z) load without structural 
deformation of pin joint.

Q z l ................................. Lateral canopy capsule load.. Do.
rsf

R c .............. Caving shield gob reaction 
load.

Major loading is to canopy and base. 
For cantilevered strata, there is 
likely to be little gob loading.

r%j>

M r q ............. No moment due to no load assumption 
(item 3 ) .

M r ............................................ Canopy resultant force moment The canopy resultant reaction force 
couple in pitch and roll is dis­
solved by allowing the resultant 
force to be positioned at the 
proper location to provide an 
equivalent force reaction at the 
required distance from the canopy 
hinge pin. The yaw moment is also 
assumed zero.

I-»*

Canopy capsule reaction 
moment.

No canopy capsule moment by assuming 
frictlonless pin joint which cannot 
transmit torque.

’All z ' s  are zero except for moments since forces act along centerline.

^Barczak, T. M., R. C. Garson, P. M. Yavorsky, and F. S. Maayeh. State-of-the-Art 
Testing of Powered Roof Supports. Paper in Proceedings of Second Conference on 
Ground Control in Mining (Morgantown, WV, July 19-21, 1982). WV Univ., 1982, pp. 64­
77.
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1. From summation of forces on caving shield (equation 28), determine horizontal 
reaction at canopy hinge pin (Px i).

P x1 ■  -Qx i +  (Tx2cos a -  Ty2sin a) +  (Sx2cos a -  Sy2sin a).

2. From summation of forces on canopy (equation 2), substitute (Px i) into equation 
and solve for Rx j.

R x 1 -  - P x i  -  Q x 1 -  L x 1

= - [“Qx 1 + (Tx2cos a - Ty2sin a) + (Sx2cos a - Sy2sin a)]

-  L x 1 -  Q x 1•

Rx 1 =  "Lxl “ ( T x 2 c o s  a ~ Ty2sin a) - (Sx2cos a - Sy2sin a),

VERTICAL RESULTANT LOAD (Ry ,)

1, From summation of moments on caving shield (equation 29), determine the verti­
cal reaction at the canopy hinge pin (Pyi).

Pyf = "Qyl + (Tx2sin a + Ty2cos a) + (Sx2sin a + Sy2cos a),

2. From summation of forces on canopy (equation 3), substitute Pyj into equation 
and solve for the vertical resultant load (Ryi).

R y 1 “  _ p y1 -  Qyl  “  L y j

- ~ £—Qyi + (Tx2sin a + Ty2cos a) + (Sx2sin a + Sy2cos a)]

“ Qyl “ Ly i•

Ryi = ~Ly1 - (Tx2sin a + Ty2cos a) - (Sx2sin a + Sy2eos a).

LATERAL RESULTANT LOAD (Rz1)

1, From summation of moments about x-axls on canopy (equation 6 ), solve for moment 
at canopy hinge pin (Mpxj).

M p x l  =  - M l x I "  y i R R z I  +  z i R R y l • '

2, From summation at moments about y-axis on canopy (equation 7), solve for moment 
at canopy hinge pin (Mpy\):

M p y l  “  “M|_y ] -  zirRx i +  X 1RR z1.

3, Substitute Mpx i into equation for summation of moments about x-axls (equation 
31) on caving shield, and solve for resultant reaction location (z1r).

HORIZONTAL RESULTANT LOAD (Rx, )
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-  [ -MLxi -  y i r R z i + z 1 RRy i ] + (Mtx2 Cos a -  Mry2s in  a)

+ (Msx2 Cos a -  Msy2 s ln  a) -  Pz i ( x 2Esin a + y 2 ECos a)

+ TZ2 ( x 2 t s ln  a + y 2 icos a) = 0.
or

z 1 r = [MlxI + yiRRzi + (Mtx2 C0 8  a -  MTy28 ln  a)

+ (Msx2 Cos a -  Msy2s in  a) -  Pz i ( x 2 Esin a + y 2 Ecos a)

+ Tz2( x 2Ts in  a + y 2rCos a ) ]  /  Ry j .

4. Subst i tu te  MPyi in to  equation f o r  moments about y -a x is  on caving sh ie ld  (equa­
t i o n  3 2 ) ,  and solve fo r  r e s u l ta n t  reac t ion  lo c a t io n  z i r .

-  [ _M|_y i “  z i RR X i +  x ) r R z i ] +  (MTx2sin a  +  Mxy2cos a )

+ (Msx28l n a + Msy2cos a )  + Pz i ( x 2 ecos a -  y 2(rsin a)

" Tz2(x2tco8 a - y 2xsin a)] = 0.

z \ r “ [_MLyi + xi rRz i - (Mxx2sin a + M-j-y2cos a)

-  (Mgx2s in  a + MSy2cos a)

" pzl(x2Ecos a - y 2Esin a)

+ Tz2(x 2 TCOs a -  y 2rs in  a ) ]  /  Rx 1 .

5 ,  Set expressions f o r  z i r  equal  to  each other .

R x i IM lx I  + yiRRzi  + (M tx2cos a  -  Mjy 2 Sin a)

+ (MsX2 C0 8  a - Msy2 s in  a) - Pz \( x 2Esin a + y 2Ecos a)

+ T z2(x 2rs ln  a + y 2jcos a ) ]

= Ry i [“M|_y i + xirRzi - (Mxx2sin a + Mjy2cos a)

“ (Msy2 8 i n  a + MSy2cos a) -  Pz i ( x 2ecos a -  y 2Esin a)

+ Tz 2( x 2tcos a -  y 2rs in  a ) ] .

Subst i tu te  Pz i = -Rz j .

R z1 [R x l (+Y1R + ( x 2ESin a + y 2 EC0 S a ) ) ]

-  Rz1 [ R y i ( x i r + ( x 2Ecos a -  y 2Es in  a ) ) ]

= Rx i [ - Mlx i - (Mtx2cos a - Mjy2sin a)

-  (Msx2 Cos a -  Msy2s in  a)  -  Tz2 ( x 2Tsin a + y 2jcos a ) ]

+ Ry 1 [ “M l y 1 -  (MTx2s in  a + Mfy2cos a)

“ (Msx2s in  a + Msy2 cos a) + Tz2( x 2tcos a -  y 2r s in  a ) ] .
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Solve for R zi.

Rzi = {Ryi[-MLy 1 - (M-j-x28 in a + M-j^cos a)

- (MSx2sin a + M Sy2cos a) + Tz2(x2Teos a - y 2Tsin a)]

-  Rx i [Mlx1 + (Mtx2cos a “ M jy2s in  a)

+ (MSx2cos a  - H Sy2sin a) + Tz2(x2TSin a + y 2Tcos a)]}

/ {Rx 1 Ey1R + (x2Esin a + y 2 ECos a)]

" RyllxiR + (x2Ecos a - y 2E8in a)]}.

VERTICAL RESULTANT LOCATION (y1R)

yiR is fixed by the plane of the canopy with the resultant defined to act on the 
surface of canopy.

HORIZONTAL RESULTANT LOCATION (x1R)

From summation of moments about z-axis on the canopy (equation 8 ), solve for xir.

x 1R - [-MPz1 - (x!0Qy, - y 1oQx1) - (xiLLy 1 - y 1L^X1)

+ y i R Rx 1 ] /  Ry1

where M Pzj is found from summation of moments about the z-axis on the caving shield 
(equation 36).

M p z i  " m T z 2  + m S z 2  + [x2E(Pxisin a - Py)cos a)

+ y2E(FxlGos a + Py1sin a)] + [x2 u(Qx1sin a " Qyicos a)

+ y 2 u(Qxlcos a + Qy1sin a)] + [x2i(Ty2) “ y2T(Tx2>]*

LATERAL RESULTANT LOCATION

Lateral resultant location was found in step 4 of the solution for lateral resul­
tant load from summation of moments about the y-axis on the caving shield.

Z 1 R  =  [ ~ M L y 1  +  x i r R z 1 -  ( M s x 2 8 i n  a  +  M s y 2 COS a)

- (Mjx2sin a + MTy2cos a) - P 2 i(x2Ecos a - y 2Esin a)

+ T z2(x 2tcos a - y 2Tsln a)] / RX 1*

Inputs to this set of equations just developed are determined from measuring leg,
canopy capsule, and lemniscate link forces. A review of this reduction begins with
leg forces and moments. The left and right leg forces are obtained by multiplying 
the leg pressures by the piston area;

L l = PL A ll (40)

L r = PR ALR ( 4 1 )
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where L l, Lr, P l, Pr, A l l , ant* ^LR are 
the left and right leg forces, and leg 
pressures and areas in pounds (force), 
pounds per square inch, and square inch, 
respectively. The components of these 
leg forces in the (xl, yl, zl) coordinate 
frame are

Ly = L *■ cos a |, (42)

= L l sin «|, (43)

L§ = L r cos a|, (44)

L^ = L r sin aj, (45)

where aj is the angle from a line paral­
lel to xl (the horizontal) to the leg. 
(This angle is less than 90°.)
Combining the left and right leg forces 

at the center of the legs, the LK j and 
Lyi are obtained as

L x i =  *-L x  +  RL X , ( 4 6 )

Ly , - LLy + RLy , (47)

and the moments created by their imbal­
ance, MlkI and Mly 11 are

M l x I “ -zl + zL Ly, (48)

M L y 1 - z L Lg - z L Lg, (49)

where zl is half the distance between the 
leg axis.

The capsule force (in pounds force) is 
determined by multiplying the capsule ex­
tend pressure by the extend piston area 
and subtracting the capsule retract pres­
sure multiplied by the retract piston 
area:

Q = (PCEACE - PCR Acr), (50)

where PCE, PCR, ACE, and ACR are capsule 
extend and retract pressures and areas in 
pounds (force) per square inch and square 
inch respectively. The capsule Inputs, 
Qxi and Qy i, are then

Qx1 " Q cos a2, (51)

Qy1 - Q Sin a2, (52)

where a 2 is the angle from a line under 
the capsule, parallel to the xl axis 
(horizontal), to the capsule axis. (When 
the capsule is level, this angle is 0 °.)

The link forces are the most difficult
to reduce. The first step is to define
the geometry. Link forces can be deduced 
from strain measurements. Three-element 
rosette gauges provide stress-strain pro­
files for each structure. For any link 
rosette the local gauge geometry is shown 
in figure 6 . The principal strains e j 
and e2 and the angle <f> of the principal
frame from the x ! y 1 frame can be deter­
mined from the three rosette strains eA, 
Eb» ec by4

e 1 , 2  “  I / 2 (eA + ec)

± l/2\J(eA - ec ) 2 + (2eB - e* - ec ) 2 (53)

2# - tan -1 —  -g.I.,!*." ec- (54)eA “ eC

4Dally, J. W., and W. P. Riley. Exper­
imental Stress Analysis. McGraw-Hill, 
1 9 7 8 ,  p .  3 2 2 .

Caving shield

— Link longitudinal 
center line

Base
FIGURE 6.— Local forward link strain rosette geometry.
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For plane stress, the principal stresses 
follow:

= [E/(l - v2 )](e| + ve2), (55)

0 2 = [E/(l - v 2 )](e2 + vei), (56)

where E is Young's modulus and v is Pois-
son's ratio.

These stresses are then rotated into 
the t, £ (transverse, longitudinal) co­
ordinate frame (fig. 6 ) by

al “ ° 2 cos2 (45° - 0

+ ct, sin2 (45° - <|>), (57)

at = 0 2 sin2 (45° - <|>)

+ 01 cos 2 (45° - *), (58)

rtZ ~ <s i - 0 2) sin (45° - <|>)

cos (45° - <|>), (59)

where 0 £ is the longitudinal stress, at 
is the transverse stress, and is the 
transverse, longitudinal shear stress.

Having calculated 0t> and Ttjj for
each rosette on a link, three forces and 
three moments can be calculated for the 
link end connected to the caving shield. 
Again, the first step is to define the 
geometry. The link is modeled by a box 
section of length I from pin center to 
pin center. The rectangular coordinate 
system (€, t|, 5 ) is used with an origin 
at the center of the base pin axis (fig. 
7). The forces and moments PtF, Vj-jj,
and Mril* re8Pectively, which
act on the caving shield pin, are shown 
relative to the coordinate system (£, n, 
5 ) in figure 8 . The superscript LF re­
fers to left forward link. For the right 
forward link the analysis is the same, 
and IF may be exchanged for LF. The re­
lationships among stresses, forces, and 
moments for the box beam link model are 
available in most textbooks on simple 
strength of materials.5

5Timoshenko, S. P., and J. N. Goodier. 
Theory of Elasticity. McGraw-Hill, 1970, 
pp. 112-155.

pin.

In summary, the following equations 
were used*

In tension,

P | F = ( 0 LJ F + crLFB) A i /2

+ (0 LFL + 0 LFR) A 2/2, (60)

where A) is the cross-sectional area of 
the top and bottom link plates, and A 2 is 
the cross-sectional area of the left and 
right link plates.
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The superscripts on the stresses are 
the rosette designations.

In shear,

vJjf ■ <t « l - TM R> (61)
where is the first moment of area of 
the cross section above the Caxis, 1  ̂ is 
the second moment or bending moment of 
inertia about the Caxis, t? is the thick­
ness of the top and bottom link plate, 
and

VCS - <TM B - t« l> W v  <62>
where 1^, t^, and are analogous to the 
above (1^, t^, and Q^).

In torsion,

MLJ - -1/2 (hn - t^Xhg - tc)
i / ~ LFB  +  T LFF \  r
H Tt£ + t£ '  t n

+ (xiiL + TLJR)tc }. (63)

For bending, the moment at the caving 
shield pin is a combination of bending 
moments at the center and bending effects 
of vĵ F and vj;F. Bending at the center is

m lfT1 - (0 f R - 0jFL) V 4 h c , (64)

MLF = (cT£LFB)Ic/4hr,. (65)

Then the bending at the end £ == £ is
given by

and
M LFtl£ = M LF - n V«  A/2’ (6 6 )
m LF
M ?£ - M^F - VnC */2‘ (67)

The simple uniaxial strain-gauge place­
ment on the front and back of the link 
provides the link extensional force 
( P*:R ) and a pure bending moment load­
ing ) on t l̂e pin axes. With the
uniaxial gauges, only one stress Is 
assumed to exist, i.e., longitudinal 
stress, cf£, which is obtained from the 
strains by

0 / [ R = EeLRF, ( 6 8 )

and
cjLRB = E e LRB. (69)

The superscripts in equations 68 and 69 
Indicate the uniaxial gauge. The force 
and moment for each link can now be cal­
culated directly, as follows:

For tension:
pLR = (ofLRF + CLRB) A/2, (70)

where A = A] + A 2 the total cross section 
of each rear link.

For bending:

MC£ = < ^ RB " cfLRF)Ic/4hn. (71)

With local link moments and forces de­
fined in terms of strains, they may be 
combined to form equivalent force-couple 
systems at the midpoints of their respec­
tive caving shield pin axes. First, 
though, local frames (£, n, ?) must be 
rotated into the (xl, yl, zl) orienta­
tion. This is done with the following 
transformation (fig. 9): ,

A xi = Ageos 0, - A^sin 6 , (72)

Ay) = Agsin <j> + A^cos 9, (73)
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VÇ> (74)

where the £ , 11»? components of the A In 
equations 72-74 may be any of those just 
derived.

Then, for links gauges with rosettes,
rpLF
X 1

ILFyi
t lf

z t

ptF COS 03 V^F Bln c£3, 

cos a,PçF sin a3 + 

VLF,

and

M

M

|LF
T x l

LF
T y l

LF  
T z 1

m lf cos «3
M t Î £  8 l n  0131

sin a3 + cos a3,
LF
U '

M

(75)

(76)

(77)

(78)

(79)

(80)

For the right link, simply substitute RF 
for LF in equations 75-80. In all cases 
ot3 is the angle from the forward link 
C-axis clockwise to the xl-axis. If the 
links are assumed to be in pure bending 
(I.e., uniaxial gauge applications), the 
forces and moments are found as follows:

; LR  
X 1

; L R
yi

; LR  
z 1

M LR
S x l

pLR
« cos ot4, (81)

pLR
5 sin a4, (82)

V LR
Ç (83)

and M lr j Sy 1I are assumed toThe moments 
be z e ro . T1 
to make the static three-dimensional
equations determinant. The relationship 
for the remaining moment is

Then the forces and moments from equa­
tions 75-80 and equation 84 were joined 
with their right link counterparts, as 
were the leg forces in equations 46-49.

For rosette-gauged links:

Txl — T L F
X 1

+ tR F 
T X1 ’

Ty 1 = t lf yi + T rf, 
y 1 *

Tzl », n?L F~ Zl 4, tRP zl *
M t x I ■ MtS + M r f  

1 T x

- z tt;f + z tT lf1 y  1 5

Mt  y ‘ 1LF 
T y  1

+ M rf 
T y  1

+  z t T r f  
' z 1

M t  1 1 = M lf + Mrf 
T z 1  T  z 1 T z l

For uniaxial-gauged links:

Sx 1 

Sy 1 

Szl 

MSx1 

M s  y 1

Mszl

c R R
b x 1 ’

g L R  +  S RR
y 1 y 1

'LR 
z 1

+ sRR

-zsSRR + zsSLR,

z sSRR  
x  1

S z l
+ M

zgS
RR
S z l '

LR  
x  1 ’

(85)

(86)

(87)

(88)

(89)

(90)

(91)

(92)

(93)

(94)

(95)

(96)

In equations 91-93, zj is half the dis­
tance between the forward link longitudi­
nal center lines. In equations 94-96, zg 
is analogous to zt for the rear links.

M LR
zl M lr,a (84)

TWO-DIMENSIONAL REDUCTION

The three-dimensional model previously 
presented can be reduced to two dimen­
sions by eliminating chosen out-of-plane 
forces. Since the primary loading occurs 
in the vertical (roof-to-floor) and hori­
zontal (face-to-waste) axis, forces and

moments In the lateral axis (subscript z 
for forces and x and y for moments) will 
be eliminated. The equations of static 
equilibrium, using the same nomenclature 
as before, then become
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FOR CANOPY (fig. 2)

If*, - Pxl + Qx1 + Lxl + Rxl = 0. (97)

lFy1 = Py1 + Qy1 + Ly, + Ry1 - 0. (98)

lMz 1(Ol) = M Pzi + Mqz 1 + M Lz, + M Lz1 + M Rz1

+  ( x i p Q y i -  y i p Q x i )  +  ( x t  i L y i -  y u L x i )

+ (xiRRy1 - y ,rRx 1) = 0. (99)

FOR CAVING SHIELD

Ifx1 - -Px1 " Qxl + ( T x 2 C 0 8  a -  T y 2 B i n  a) + (SX2Cos a - Sy2sin a)

+ (Rcx2COS a - Rcy2sin a) ■» 0. (100)

^Fy i = "Pyi ~ Qyi + (Tx2sln a + Ty2cos a) + (S*2sin a + Sy2Cos a)

+ (Rcx2 8in ct + Rcy2COS a) = 0. (101)

Jmz i (02) + [x2E (Pxisin a ~ P y 1 cos a) + y2E(pxlcos 01 + Pyisin a)]

+ [x2u (Qxisin a - Qyicos a) + y2u(Qxicos a + Qyisin a)]

+ [x2T (Ty2 ) - y 2 T(Tx2 )] + [x2 Rc(RCy2 > " y 2 Rc(RCx2 >] * 0. (102)

Solution of the two-dimensional resultant load in the x-y (horizontal-vertical) 
plane is then found as follows, using the same elimination of forces as in the three­
dimensional model.

HORIZONTAL RESULTANT LOAD (Rx t)

1. From summation of forces acting on caving shield, determine reactions at canopy 
hinge pin.

Pxl = -Qxl + (TX2C0s a - Ty2sin a) + (SX2cos a - Sy2sln a).

Pyi = -Qy1 + (TX2sln a + Ty2cos a) + (Sx2sin a + Sy2cos a).

2. Substitute these expressions into the summation of moment equation for the cav­
ing shield.

X 2 E [“Qxisin a + sin o(TX2 Cos a - Ty2 sin a) + sin a(SX2 C0s a - Sy2sin a)

+ Qyicos a - cos a(TX2sin a + Ty2cos a) - cos a(SX2sin a + Sy2cos a)]
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-y2E [Qx1cos ° “ cos a(TX2Cos a - T y2sin a) - cos a(SX2Cos a - Sy2sin a)

+ (Qy ]sin a - sin a(TX2sin a + Ty2cos a) - sin ot(Sx2eos a + Sy2sin a)]

+ x 2U (Qxisin a - Qyicos a) + y 2u(Qx1cos a + Qyisin a)

+ x 2T (Ty2) “  Y 2 t(Tx2 ) = 0.

X2E [-Qxisin a - Ty2 - Sy2 + Qy icos a]

- Y2E [Qxicos a - Tx2 - Sx2  + Qy isin a]

+ x 2u [Qx1 sin a - Qy1cos a] + y 2u[Qxicos a + Qy1sin a]

+ x 2f  (Ty2) -  y 2T(Tx2) “  0*

3. Solve for tension link force S where

S y 2 " S sin 3 and Sx2 “ S cos 3

where 3 equals angle between link and y-axls in (x2 , y2 , z2) coordinate frame.

x 2 e [“Qx1 sin a “ T y 2 - S sin 3 + Qy1cos a]

“  Y2E [Qx1c°s « “  t x2 “  s cos P + Q y is in  a]

+ x 2u [Qxisin a - Qy icos a] + y 2 u [Qxicos a + Qyisin a]

+  <12T ( T y 2 )  “  y2T(Tx2) "  0«

S = { $  [ "Q x is in  a -  Ty2 + Qyicoe a] -  y 2g[Qxicos a -  Tx2 + Q y is in  a] 
k

+ x [Qxisin a - Qy jcos a] + y2 u[Qxicos a + Qyisin a]

+ x 2T (Ty2) “ y2T<Tx2)}/[x2ESln 3 - y2ECOS 3].

4. From summation of forces on caving shield, determine horizontal reaction at
canopy hinge pin.

Px i = -Qxi + (Tx2cos a - Ty2sin a) + (Sx2cos a - Sy2sin a).

5. Substitute results of steps 1-4 into equation for summation of forces on canopy
and solve for (Rx i).

Rx ; = -Pxi " Qx i - Lx i.

VERTICAL RESULTANT LOAD (Ry i)

1. Solve for vertical reaction at canopy hinge pin from summation of forces on
caving shield.

Py i =» -Qy j + (Tx2sin a + Ty2cos a) + (Sx2sin a + Sy2cos a).
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2. Substitute Pyi and results from step 3 previously Into expression for summation 
of forces on canopy and solve for Ryj.

Ry) = "Py1 - Qy1 ~ Ly).

VERTICAL RESULTANT LOCATION (x,R)

Solve for xjr from summation of moments on canopy.

x ir = E-(xiqQy i - yiqQ xi ) “ (xi t_Lyi - yi lL x i ) + yiR^x] / Ryi*

CONCLUSIONS

The solution of shield mechanics from a rigid-body static analysis of the shield 
structure Is fundamental to an understanding of shield behavior. A three-dimensional 
analysis considering three forces and three moments at each reaction reveals the 
shield structure is indeterminate to a high degree. A determinate solution is pro­
duced by eliminating several unknowns which are nonparticipating or thought to have 
little effect on overall shield mechanics, and by measuring leg, canopy capsule, and 
lemniscate link forces. Even with these reductions, the three-dimensional static 
equilibrium equations are cumbersome. A two-dimensional analysis of the shield is 
obtained by further reduction of the three-dimensional equilibrium equations by elim­
ination of out-of-plane forces. The two-dimensional planar model, defined by the 
face-to-waste and roof-to-floor plane, should be adequate for most shield analyses, 
as the primary response of the shield structure is to resist roof-to-floor and face- 
to-waste strata displacement.
The research presented in this report is a first step in the solution of shield 

mechanics. The approach taken in these initial efforts is to provide closed-form 
solutions of statically determinate models by rigid-body analysis of the shield 
structure. As shown in the analysis, the determinate solution requires several as­
sumptions as to the participation of forces and moments. A more prudent approach, 
especially in the longer term, Is to achieve an indeterminate solution utilizing a 
work-energy or stiffness evaluation. Such models will be evaluated as part of the 
Bureau's continuing efforts in mine roof support research.
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